Minggu, 22 September 2013


Alkana
Alkana


Alkana biasa disebut dengan senyawa hidrokarbon jenuh. Disebut hidrokarbon karena di dalamnya hanya terkandung atom karbon dan hidrogen. Disebut jenuh karena hanya memiliki ikatan tunggal C-H dan C-C saja. Alkana memiliki rumus umu CnH2n+2, di mana n adalah bilangan asli yang menyatakan jumlah atom karbon. Alkana juga sering disebut sebagai senyawa alifatik (Yunani = aleiphas yang berarti lemak). Hal ini dikarenakan lemak-lemak hewani mengandung karbon rantai panjang yang mirip dengan alkana. Alkana dengan satu formula dapat membentuk beberapa struktur molekul. Misalnya alkana dengan empat atom karbon dapat membentuk normal butana dan isobutana, keduanya sama-sama memiliki rumus molekul C4H10. Hal yang sama juga terjadi untuk C5H12, dan seterusnya. Suatu senyawa yang memiliki jumlah dan macam atom sama tetapi berbeda dalam penataannya disebut dengan isomer. Isomer berasal dari bahasa Yunani; isos + meros yang berarti terbuat dari bagian yang sama. Senyawa seperti butana dan isobutana hanya berbeda pada urutan atom yang terikat satu sama lainnya, disebut isomer konstitusional. Isomer konstitusional tidak terbatas hanya untuk alkana, tetapi juga pada sebagian besar senyawa organik. Isomer konstitusional bisa berbeda pada susunan kerangka atom karbon (seperti pada butana dan isobutana), perbedaan gugus fungsi (seperti pada etanol dan dimetil eter), atau berbeda pada penempatan gugus fungsi (isopropilamina dan propilamina). Meskipun memiliki formula yang sama, sifat-sifat fisika kimia dari isomer biasanya berbeda. Alkana dapat digambarkan dengan menggunakan struktur terkondensasi. Semua ikatan dalam molekul diabaikan/ dihilangkan. Jika ada tiga atom hidrogen terikat pada satu karbon, digambar dengan CH3, jika dua hidrogen digambar dengan CH2, dan seterusnya. Dengan demikian kita dapat menggambar butana dengan struktur CH3CH2CH2CH3 atau CH3(CH2)2CH3.

Alkana diberi nama berdasarkan jumlah atom karbonnya. Penamaan diambil dari bahasa Yunani, kecuali untuk satu hingga empat atom karbon, yaitu metana, etana, propana, dan butana.  Akhiran ana ditambahkan pada akhir tiap nama untuk memberikan ciri bahwa senyawa tersebut adalah alkana. Selanjutnya, pentana berarti terdiri dari lima atom karbon, heksana terdiri dari enam karbon, dan seterusnya.



Sifat-sifat kimia

Secara umum, alkana adalah senyawa yang reaktivitasnya rendah, karena ikatan C antar atomnya relatif stabil dan tidak mudah dipisahkan. Tidak seperti kebanyakan senyawa organik lainnya, senyawa ini tidak memiliki gugus fungsional.
Senyawa alkana bereaksi sangat lemah dengan senyawa polar atau senyawa ion lainnya. Konstanta disosiasi asam (pKa) dari semua alkana nilainya diatas 60, yang berarti sulit untuk bereaksi dengan asam maupun basa (lihat karbanion). Pada minyak bumi, molekul-molekul alkana yang terkandung di dalamnya tidak mengalami perubahan sifat sama sekali selama jutaan tahun.

Reaksi dengan oksigen (reaksi pembakaran)

Semua alkana dapat bereaksi dengan oksigen pada reaksi pembakaran, meskipun pada alkana-alkana suku tinggi reaksi akan semakin sulit untuk dilakukan seiring dengan jumlah atom karbon yang bertambah. Rumus umum pembakaran adalah:

 CnH2n+2 + (1.5n+0.5)O2 (n+1)H2O + nCO2

Ketika jumlah oksigen tidak cukup banyak, maka dapat juga membentuk karbon monoksida, seperti pada reaksi berikut ini:

CnH(2n+2) + nO2 (n+1)H2O + nCO

Contoh reaksi, metana:

2CH4 + 3O2 2CO + 4H2O
CH4 + 1.5O2 CO + 2H2O

Reaksi dengan halogen

Reaksi antara alkana dengan halogen disebut dengan reaksi "halogenasi radikal bebas". Atom hidrogen pada alkana akan secara bertahap digantikan oleh atom-atom halogen. Radikal bebas adalah senyawa yang ikut berpartisipasi dalam reaksi, biasanya menjadi campuran pada produk. Reaksi halogenasi merupakan reaksi eksotermik dan dapat menimbulkan ledakan.
Reaksi ini sangat penting pada industri untuk menghalogenasi hidrokarbon. Ada 3 tahap:
  • Inisiasi: radikal halogen terbentuk melalui homolisis. Biasanya, diperlukan energi dalam bentuk panas atau cahaya.
  • Reaksi rantai atau Propagasi: radikal halogen akan mengabstrak hidrogen dari alkana untuk membentuk radikal alkil.
  • Terminasi rantai: tahap dimana radikal-radikal bergabung.
Hasil eksperimen menunjukkan bahwa semua reaksi halogenasi bisa menghasilkan semua campuran isomer yang berarti mengindikasikan atom hidrogen rentan terhadap reaksi. Atom hidrogen sekunder dan tersier biasanya akan tergantikan karena stablitas radikal bebas sekunder dan tersier lebih baik. Contoh dapat dilihat pada monobrominasi propana: 

Monobrominasi propana

Isomerisasi dan reformasi


Isomerisasi dan reformasi ada proses pemanasan yang mengubah bentuk alkana rantai lurus dengan adanya katalis platinum. Pada isomerisasi, alkana rantai lurus menjadi alkana rantai bercabang. Pada reformasi, alkana rantai lurus berubah menjadi sikloalkana atau hidrokarbon aromatik, dengan hidrogen sebagai produk sampingan. Kedua proses ini akan meningkatkan bilangan oktan pada senyawa yang dihasilkan.

Cracking

Cracking akan memecah molekul besar menjadi molekul-molekul yang lebih kecil. Reaksi cracking dapat dilakukan dengan metode pemanasan atau dengan katalis. Metode cracking dengan pemanasan akan melibatkan mekanisme homolitik dengan pembentukan radikal bebas. Metode cracking dengan bantuan katalis biasanya melibatkan katalis asam, prosesnya akan menyebabkan pemecahan ikatan heterolitik dengan menghasilkan ion yang muatannya berbeda. Ion yang dihasilkan biasanya berupa karbokation dan anion hidrida yang tidak stabil.

Reaksi lainnya

Alkana akan bereaksi dengan uap dengan bantuan katalis berupa nikel. Alkana juga dapat melalui proses klorosulfonasi dan nitrasi meskipun membutuhkan kondisi khusus. Fermentasi alkana menjadi asam karboksilat juga dapat dilakukan dengan beberapa teknik khusus. Pada Reaksi reed, sulfur dioksida, klorin dan cahaya mengubah hidrokarbon menjadi sulfonil klorida. Abstraksi nukleofilik dapat digunakan untuk memisahkan alkana dari logam. Gugus alkil daris sebuah senyawa dapat dipindahkan ke senyawa lainnya dengan reaksi transmetalasi.







Monobrominasi propana




Permasalahan
bagaiman tentang perbedaan reaksi cracking yang dapat di lakukan dengan metode pemanasan dan katalis , ,danjuga bagaimana kesamaan reaksi antara kedua metode trsebut ?